Donor limited hot deck imputation: effects on parameter estimation

نویسندگان

  • Dieter William Joenssen
  • Udo Bankhofer
چکیده

Methods for dealing with missing data in the context of large surveys or data mining projects are limited by the computational complexity that they may exhibit. Hot deck imputation methods are computationally simple, yet effective for creating complete data sets from which correct inferences may be drawn. All hot deck methods draw values for the imputation of missing values from the data matrix that will later be analyzed. The object, from which these available values are taken for imputation within another, is called the donor. This duplication of values may lead to the problem that using any donor “too often” will induce incorrect estimates. To mitigate this dilemma some hot deck methods limit the amount of times any one donor may be selected. This study answers which conditions influence whether or not any such limitation is sensible for six different hot deck methods. In addition, five factors that influence the strength of any such advantage are identified and possibilities for further research are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analysis of missing data in public use survey databases : a survey of statistical methods

THE ANALYSIS OF MISSING DATA IN PUBLIC USE SURVEY DATABASES: A SURVEY OF STATISTICAL METHODS Ping Xu November 20, 2004 Missing data is very common in survey research. However, currently few guidelines exist with regard to the diagnosis and remedy to missing data in survey research. The goal of the thesis was to investigate properties and effects of three selected missing data handling technique...

متن کامل

Fractional hot deck imputation

To compensate for item nonresponse, hot deck imputation procedures replace missing values with values that occur in the sample. Fractional hot deck imputation replaces each missing observation with a set of imputed values and assigns a weight to each imputed value. Under the model in which observations in an imputation cell are independently and identically distributed, fractional hot deck impu...

متن کامل

Weight Adjustments for Fractional Regression Hot Deck Imputation

Fractional regression hot deck imputation (FRHDI), suggested by J. K. Kim, imputes multiple values for each instance of a missing dependent variable. The imputed values are equal to the predicted value based on the fully observed cases plus multiple random residuals chosen from the set of empirical residuals. Fractional weights are chosen to enable variance estimation and to preserve the correl...

متن کامل

تحلیل مشاهدات گمشده در مطالعه اثر دوزهای مختلف مکمل ویتامین D بر مقاومت به انسولین در دوران بارداری

Introduction: The aim  of  this  study  was to impute missing data  and  to compare the effect  of  different doses of  vitamin D supplementation on  insulin resistance during  pregnancy. Methods: A clinical trial  study   was done on 104  women  with diabetes and gestational age less than 12 weeks between 1391 and...

متن کامل

Hot Deck imputation for multivariate missing data

Fractional hot deck imputation, considered in Fuller and Kim (2005), is extended to multivariate missing data. The joint distribution of the study items is nonparametrically estimated using a discrete approximation, where the discrete transformation also serves to define imputation cells. The procedure first estimates the probabilities for the cells and then imputes real observations for missin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013